Worst-case multi-objective error estimation and adaptivity
详细信息    查看全文
文摘
This paper introduces a new computational methodology for determining a-posteriori multi-objective error estimates for finite-element approximations, and for constructing corresponding (quasi-)optimal adaptive refinements of finite-element spaces. As opposed to the classical goal-oriented approaches, which consider only a single objective functional, the presented methodology applies to general closed convex subsets of the dual space and constructs a worst-case error estimate of the finite-element approximation error. This worst-case multi-objective error estimate conforms to a dual-weighted residual, in which the dual solution is associated with an approximate supporting functional of the objective set at the approximation error. We regard both standard approximation errors and data-incompatibility errors associated with incompatibility of boundary data with the trace of the finite-element space. Numerical experiments are presented to demonstrate the efficacy of applying the proposed worst-case multi-objective error estimate in adaptive refinement procedures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700