Biofunctionalization via flow shear stress resistant adhesive polysaccharide, hyaluronic acid-catechol, for enhanced in vitro endothelialization
详细信息    查看全文
文摘
We report a single-step method for achieving in vitro endothelialization using a water-resistant adhesive polysaccharide, hyaluronic acid (HA). Introduction of adhesive properties is inspired by the catechol chemistry utilized in marine mussels, in which bioactive hyaluronic acid is chemically modified into hyaluronic acid-catechol (HA-catechol). Quantification of cell adhesiveness to HA-catechol coated substrate was performed with microfluidic device-based adhesion assay under shear forces. The HA-catechol exhibited enhanced ability of surface binding under flow shear force condition compared to unmodified HA. HA-catechol was able to retain the adhered endothelial cells under fluid shear stresses up to 150 dyn/cm2, which is above the physiological condition in human vascular system. This is the first study demonstrating utility of the adhesive force of catechol-tethered polymers under continuous shear force environments such as microfluidic devices. The HA-catechol compound developed herein could provide a straightforward strategy for improving stability in surface retention and preventing substantial tissue damage from the fluctuating blood flow after vascular reconstructive surgery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700