Influence of main and outer wings on aerodynamic characteristics of compound wing-in-ground effect
详细信息    查看全文
文摘
A practical mathematical model with low computational time and good accuracy is applied to investigate the aerodynamic characteristics and static height stability of the compound wing-in-ground effect (WIG). The compound WIG consists of a main wing with low aspect ratio and an endplate, and an outer wing with high aspect ratio. To validate the present mathematical model, a numerical simulation is performed so that numerical results had a good agreement with the experimental data. The analysis shows that the main wing is useful in the extreme ground effect zone and the outer wing enhances performance of the compound WIG in the weak ground effect zone. In order to satisfy the static height stability of the compound WIG it is evaluated by Irodov's criterion. Influence of junction position of outer wing on the main wing is investigated on the static height stability of compound WIG. A comparison of Irodov's criterion shows that static height stability improves with moving the outer wing position backward into the trailing edge of the main wing and this led to a decrease in the tail area. The proposed mathematical model could be appropriate for aerodynamic optimization of WIG crafts with the compound wing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700