Numerical analysis of multiple, thin-sail geometries based on Prandtl¡¯s lifting-line theory
详细信息    查看全文
文摘
Solutions obtained from a numerical method based on Prandtl¡¯s lifting-line theory, valid for multiple lifting surfaces with arbitrary sweep, are obtained for a number of rigid wing and sail geometries. The results are compared against solutions obtained using established vortex-lattice methods, and computational fluid dynamics solutions to the Euler equations. For the case of an untwisted, rectangular wing, numerical lifting-line, vortex-lattice, and Euler solutions were all in reasonable agreement. However, the numerical lifting-line method was the only method to predict the constant ratio of induced-drag coefficient to lift coefficient squared, which has been predicted from the analytic solution and confirmed by well established experimental data. Results are also presented for a forward-swept, tapered wing. Additional results are presented in terms of lift and induced-drag coefficients for an isolated mainsail, and mainsail/jib combinations with sails representative of both a standard and tall rig Catalina 27. The influence of the nonlinear terms in the lifting-line solution appears minimal, with the exception of mainsail results when considering jib/mainsail combinations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700