A novel dynamic aeroelastic framework for aeroelastic tailoring and structural optimisation
详细信息    查看全文
文摘
Driven by a need to improve the efficiency of aircraft and reduce the fuel consumption, composite materials are applied extensively in the design of aircraft. A dynamic aeroelastic framework for the conceptual design of a generic composite wing structure is presented. The wing is discretised in several spanwise sections, where each section has a number of laminates throughout the cross-section, each having their own stiffness and thickness. The model uses a geometrically nonlinear beam model linearized around the nonlinear static aeroelastic equilibrium position coupled to a continuous-time state-space unsteady aerodynamic model to obtain the dynamic aeroelastic response, making the model suitable for dynamic aeroelastic analysis of generic aircraft wings under the assumption of small disturbances with respect to the static aeroelastic equilibrium position. Two optimisations are run for a generic aircraft wing under manoeuvre load conditions and aeroelastic, structural, and aerodynamic constraints: one, a quasi-isotropic wing to serve as a reference solution and two, a fully tailored wing clearly showing the benefit of aeroelastic tailoring and the use of the present framework for conceptual wing design.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700