Peritoneal mast cell degranulation differently affected thioglycollate-induced macrophage phenotype and activity in Dark Agouti and Albino Oxford rats
详细信息    查看全文
文摘

Aims

Macrophages are heterogeneous population of inflammatory cells and, in response to the microenvironment, become differentially activated. The objective of the study was to explore macrophage effector functions during different inflammatory conditions in two rat strains.

Main methods

We have investigated the effects of in vivo treatment with mast cell-degranulating compound 48/80 and/or thioglycollate on peritoneal macrophage phagocytosis and capacity to secrete hydrogen peroxide (H2O2), tumor necrosis factor-¦Á (TNF-¦Á) and nitric oxide (NO) in Dark Agouti (DA) and Albino Oxford (AO) rat strains. Besides, fresh peritoneal cells were examined for the expression of ED1, ED2 and CD86 molecules.

Key findings

In thioglycollate-elicited macrophages, increased proportion of ED1 + cells was accompanied with elevated phagocytosis of zymosan (DA strain), whereas increased expression level of CD86 molecule on ED2 + macrophages matched elevated secretory capacity for H2O2, TNF-¦Á and NO (AO rats). Although mast cell degranulation induced by compound 48/80 increased the percentages of ED2 + macrophages in both rat strains, the proportion of ED2 + cells expressing CD86 molecule was decreased and increased in DA and AO rats, respectively. Furthermore, in DA strain compound 48/80 diminished macrophage secretion of NO, but stimulated all macrophage functions tested in AO strain. If applied concomitantly, the compound 48/80 additively increased macrophage activity induced by thioglycollate in AO rats.

Significance

Macrophages from DA and AO rat strains show different susceptibility to mediators released from mast cells, suggesting that strain-dependant predisposition(s) toward particular activation pattern is decisive for the macrophage efficacy in response to inflammatory agents.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700