Products and mechanism of secondary organic aerosol formation from the reaction of 3-methylfuran with OH radicals in the presence of NOx
详细信息    查看全文
文摘
The aerosol products of the OH radical-initiated reaction of 3-methylfuran in the presence of NOx was investigated in an environmental chamber using a combination of online and offline techniques. Aerosol mass spectra, thermal desorption profiles, O/C, H/C, and N/C ratios, functional group composition, UV absorption spectra, and time profiles of NO, O3, and organic aerosol mass were all consistent with a mechanism of secondary organic aerosol (SOA) formation under dry conditions in which three previously identified unsaturated C5 reaction products, a 1,4-dialdehyde, hydroxyfuranone, and 1,4-aldoacid, partitioned to the aerosol and then underwent acid-catalyzed heterogeneous/multiphase reactions to form two hemiacetals, a cyclic hemiacetal, an ester, and two acetals. SOA formed in the presence of aqueous seed particles appeared to be composed primarily of gem-diol oligomers formed through reactions of unsaturated 1,4-dialdehydes and 1,4-aldoacids with water. Second-generation products of gas-phase OH radical reactions, which should have been a significant fraction of the total products, made at most a minor contribution to SOA. Because unsaturated 1,4-dicarbonyls are major products of the oxidation of aromatic hydrocarbons, the results suggest that although those compounds may form SOA via oligomerization reactions, SOA formation from aromatic hydrocarbons is probably due primarily to other reaction products.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700