Multi-objective optimization of steel nitriding
详细信息    查看全文
文摘
Steel nitriding is a thermo-chemical process largely employed in the machine components production to solve mainly wear and fatigue damage in materials. The process is strongly influenced by many different variables such as steel composition, nitrogen potential (range 0.8–35), temperature (range 350–1200 °C), time (range 2–180 hours). In the present study, the influence of such parameters affecting the nitriding layers' thickness, hardness, composition and residual stress was evaluated. The aim was to streamline the process by numerical–experimental analysis allowing to define the optimal conditions for the success of the process. The optimization software that was used is modeFRONTIER (Esteco), through which was defined a set of input parameters (steel composition, nitrogen potential, nitriding time, etc.) evaluated on the basis of an optimization algorithm carefully chosen for the multi-objective analysis. The mechanical and microstructural results belonging to the nitriding process, performed with different processing conditions for various steels, are presented. The data were employed to obtain the analytical equations describing nitriding behavior as a function of nitriding parameters and steel composition. The obtained model was validated through control designs and optimized by taking into account physical and processing conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700