Fast reconstruction algorithm for perturbed compressive sensing based on total least-squares and proximal splitting
详细信息    查看全文
文摘
We consider the problem of finding a sparse solution for an underdetermined linear system of equations when the known parameters on both sides of the system are subject to perturbation. This problem is particularly relevant to reconstruction in fully-perturbed compressive-sensing setups where both the projected measurements of an unknown sparse vector and the knowledge of the associated projection matrix are perturbed due to noise, error, mismatch, etc. We propose a new iterative algorithm for tackling this problem. The proposed algorithm utilizes the proximal-gradient method to find a sparse total least-squares solution by minimizing an l1-regularized Rayleigh-quotient cost function. We determine the step-size of the algorithm at each iteration using an adaptive rule accompanied by backtracking line search to improve the algorithm’s convergence speed and preserve its stability. The proposed algorithm is considerably faster than a popular previously-proposed algorithm, which employs the alternating-direction method and coordinate-descent iterations, as it requires significantly fewer computations to deliver the same accuracy. We demonstrate the effectiveness of the proposed algorithm via simulation results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700