Chemical crosslinking studies with the mouse Kcc1 K–Cl cotransporter
详细信息    查看全文
文摘
Oligomerization, function, and regulation of unmodified mouse Kcc1 K–Cl cotransporter were studied by chemical crosslinking. Treatment of Xenopus oocytes and 293T cells expressing K–Cl cotransporter Kcc1 with several types of chemical cross-linkers shifted Kcc1 polypeptide to higher molecular weight forms. More extensive studies were performed with the amine-reactive disuccinyl suberate (DSS) and with the sulfhydryl-reactive bis-maleimidohexane (BMH). Kcc1 cross-linking was time-dependent in intact oocytes, and was independent of protein concentration in detergent lysates from oocytes or 293T cells. Kcc1 cross-linking by the cleavable cross-linker DTME was reversible. The N-terminal and C-terminal cytoplasmic tails of Kcc1 were not essential for Kcc1 crosslinking. PFO-PAGE and gel filtration revealed oligomeric states of uncrosslinked KCC1 corresponding in mobility to that of cross-linked protein. DSS and BMH each inhibited KCC1-mediated 86Rb+ uptake stimulated by hypotonicity or by N-ethylmaleimide (NEM) without reduction in nominal surface abundance of KCC1. These data add to evidence supporting the oligomeric state of KCC polypeptides.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700