A numerical study of void coalescence and fracture in nonlinear elasticity
详细信息    查看全文
文摘
We present a numerical implementation of a model for void coalescence and fracture in nonlinear elasticity. The model is similar to the Ambrosio–Tortorelli regularization of the standard free-discontinuity variational model for quasistatic brittle fracture. The main change is the introduction of a nonlinear polyconvex energy that allows for cavitation. This change requires new analytic and numerical techniques. We propose a numerical method based on alternating directional minimization and a stabilized Crouzeix–Raviart finite element discretization. The method is used in several experiments, including void coalescence, void creation under tensile stress, failure in perfect materials and in materials with hard inclusions. The experimental results show the ability of the model and the numerical method to study different failure mechanisms in rubber-like materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700