Single event double node upset tolerance in MOS/spintronic sequential and combinational logic circuits
详细信息    查看全文
文摘
Spin-transfer torque random access memory (STT-RAM) is an emerging storage technology that is considered widely thanks to its attractive features such as low power consumption, nonvolatility, scalability and high density. STT-RAMs are comprised of a hybrid design of CMOS and spintronic units. Magnetic tunnel junction (MTJ) as the basic element of such hybrid technology is inherently robust against radiation induced faults. However, the peripheral CMOS component for sensing the resistance of the MTJs are prone to be affected by energetic particles. This paper proposes low power, nonvolatile and radiation hardened latch and lookup table circuits based on hybrid CMOS/MTJ technology for the next generation integrated circuit devices. Simulation results revealed that, the proposed circuits are fully robust against single event upsets (SEU) and also single event double node upsets (SEDU) that are of the main reliability challenging issues in current sub-nanometer CMOS technologies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700