Ammonia sensing properties of multiwalled carbon nanotubes embedded in porous alumina templates
详细信息    查看全文
文摘
Highly ordered anodic aluminum oxide templates were fabricated by a two step anodization process. Vertically aligned multiwalled carbon nanotube (MWCNT) arrays were grown in these templates through xylene pyrolysis, without the use of a catalyst and were integrated into a resistive sensor design. An equivalent circuit model was developed to understand the operation and to propose design changes for increased sensitivity. During the xylene pyrolysis, a thin layer of amorphous carbon (5–50 nm), forms on both sides of the template as a by-product of the CVD process. This a-C layer plays a crucial role in determining baseline resistance and the sensitivity, since it affects the current path. A study was undertaken to elucidate the dependence of sensitivity on the thickness of amorphous carbon layers, by subjecting the device to post-processing step of plasma oxidation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700