Exact solution of the two-axis countertwisting Hamiltonian
详细信息    查看全文
文摘
It is shown that the two-axis countertwisting Hamiltonian is exactly solvable when the quantum number of the total angular momentum of the system is an integer after the Jordan–Schwinger (differential) boson realization of the SU(2) algebra. Algebraic Bethe ansatz is used to get the exact solution with the help of the SU(1,1) algebraic structure, from which a set of Bethe ansatz equations of the problem is derived. It is shown that solutions of the Bethe ansatz equations can be obtained as zeros of the Heine–Stieltjes polynomials. The total number of the four sets of the zeros equals exactly 2J+12J+1 for a given integer angular momentum quantum number JJ, which proves the completeness of the solutions. It is also shown that double degeneracy in level energies may also occur in the J→∞J→∞ limit for integer JJ case except a unique non-degenerate level with zero excitation energy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700