Cathodic voltage-controlled electrical stimulation of titanium for prevention of methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii biofilm infections
详细信息    查看全文
文摘
Antibiotic resistance of bacterial biofilms limits available treatment methods for implant-associated orthopaedic infections. This study evaluated the effects of applying cathodic voltage-controlled electrical stimulations (CVCES) of −1.5 V and −1.8 V (vs. Ag/AgCl) to coupons of commercially pure titanium (cpTi) incubated in cultures of methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii (A. baumannii) as a method of preventing bacterial attachment. Stimulations were applied for 2, 4, and 8 h and coupon-associated and planktonic colony-forming units (CFU) were enumerated following stimulation. Compared to open circuit potential (OCP) controls, CVCES for 4 h at −1.8 V significantly reduced coupon-associated MRSA CFU by 99.9% (1.30 × 104 vs. 4.45 × 107, p = 0.047) and A. baumannii coupon-associated CFU by 99.9% (1.64 × 104 vs. 5.93 × 107, p = 0.001) and reduced planktonic CFU below detectable levels for both strains. CVCES at −1.8 V for 8 h also reduced coupon-associated and planktonic CFU below detectable levels for each strain. CVCES at −1.5 V for 4 and 8 h, and −1.8 V for 2 h did not result in clinically relevant reductions. For 4 and 8 h stimulations, the current density was significantly higher for −1.8 V than −1.5 V, an effect directly related to the rate of water and oxygen reduction on the cpTi surface. This significantly increased the pH, a suspected influence in decreased CFU viability. The voltage-dependent electrochemical properties of cpTi likely contribute to the observed antimicrobial effects of CVCES. This study revealed that CVCES of titanium could prevent coupon-associated and planktonic CFU of Gram-positive MRSA and Gram-negative A. baumannii from reaching detectable levels in a magnitude-dependent and time-dependent manner.Statement of SignificancePeriprosthetic joint infection is a devastating outcome of total joint arthroplasty and has led to increased patient morbidity and rising healthcare costs. Current treatments are limited by the growing prevalence of antimicrobial resistant biofilms. Therefore, there is a growing interest in the prevention of bacterial colonization of implants. Previous work has shown that cathodic voltage-controlled electrical stimulation (CVCES) of titanium is effective both in vitro and in vivo as an antimicrobial strategy to eradicate established implant-associated biofilm infections. The present study revealed that CVCES of titanium coupons also has utility in preventing coupon-associated and planktonic colony-forming units of Gram-positive methicillin-resistant Staphylococcus aureus and Gram-negative Acinetobacter baumannii from reaching detectable levels in a magnitude-dependent and time-dependent manner.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700