Coupled symplectic maps as models for subdiffusive processes in disordered Hamiltonian lattices
详细信息    查看全文
文摘
We investigate dynamically and statistically diffusive motion in a chain of linearly coupled 2-dimensional symplectic McMillan maps and find evidence of subdiffusion in weakly and strongly chaotic regimes when all maps of the chain possess a saddle point at the origin and the central map is initially excited. In the case of weak coupling, there is either absence of diffusion or subdiffusion with acb663ac1a806df6a23c8eced68aa37" title="Click to view the MathML source">q>1-Gaussian probability distributions, characterizing weak chaos. However, for large enough coupling and already moderate number of maps, the system exhibits strongly chaotic (q≈1) subdiffusive behavior, reminiscent of the subdiffusive energy spreading observed in a disordered Klein–Gordon Hamiltonian. Our results provide evidence that coupled symplectic maps can exhibit physical properties similar to those of disordered Hamiltonian systems, even though the local dynamics in the two cases is significantly different.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700