2D Seismic interpretation of strike-slip faulting, salt tectonics, and Cretaceous unconformities, Atlas Mountains, central Tunisia
详细信息    查看全文
文摘
The Cretaceous deposits in central Tunisia blocks were studied by sequence stratigraphy, 2D seismic interpretation calibrated to the well and associated outcrop data. The constructing and comparing histories of the northern and southern blocks of the Gafsa master fault was the establishment of platform to basin stratigraphic configuration based on the major unconformity surfaces.

Three important basin zones mark subsurface structures: Gafsa to the south, Souinia-Majoura to the northeast and Sidi Aïch-Mèjel Bel Abbès to the northwest. Basin depocenters and upthrown blocks are bounded by the N120° Gafsa and Majoura and N180° Sidi Ali Ben Aoun wrench fault salt-intruded tectonic corridors and subdivided by the associated N60° and N90° trending second-order fault corridors. The Mèjel Bel Abbès block is characterized by brittle structures associated with a deep asymmetric geometry that is organized into depressions and uplifts. Halokinesis of Triassic salt began in the Jurassic and continued during the Cretaceous periods. During extensional deformations, salt movement controlled sedimentation distribution and location of pre-compressional structures. During compressional deformations, salt remobilization accentuated the folded uplifts. The Triassic salt facies constitutes a level of decollement at the base of the Mesozoic deposits during the later displacements.

The coeval dextral strike-slip motion along the three northwest–southeast bounding master faults (Gafsa, Sehib-Alima and Majoura-Mech) suggests a pull-apart opening of the Gafsa basin. Synchronous movements of the Gafsa first-order dextral strike-slip fault with the Sidi Ali Ben Aoun sinistral wrench fault caused formation of tectonic obstacles that are shown first by the sealed structures, then by development of the local compressive stress that caused formation of the south overturned folds and the syncline depressions. The transcurrent fault systems caused formation of Turonian and Senonian unconformities and hiatuses on the Sidi Aïch and Souinia-Majoura uplifts that corresponded to the Kasserine Islets. Sedimentary distribution and structural features indicate two events of regional deformation. The Albian–Cenomanian and Turonian transtensional displacements are demonstrated by depressions and grabens, with divergent reflectors striking against dipping growth fault. The Coniacian–Maastrichtian transpressional movements are marked by reverse faults and folds associated with pinch out structures and stratigraphic unconformities.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700