Retrieval of aerosol optical depth and surface reflectance over land from NOAA AVHRR data
详细信息    查看全文
文摘
An algorithm for the land aerosol and bidirectional reflectance inversion by times series technique (LABITS) is proposed and applied to data from the National Oceanic and Atmospheric Administration (NOAA) advanced very high resolution radiometer (AVHRR). The surface reflectance and aerosol optical depth are inverted from AVHRR Channel 1 data using a model for the earth-atmosphere system which couples an atmospheric radiative transfer model with the Ross-Thick-Li-sparse bidirectional reflectance factor (BRF) model. Basic assumptions are that the surface bidirectional reflective property does not vary over a 2-4 day periods and that the aerosol characteristics are uniform within a 0.1¡ã ¡Á 0.1¡ã window (approximately 10 km ¡Á 10 km). The LABITS algorithm is applied to data from AVHRR on the NOAA-15, NOAA-16, and NOAA-18 satellites over four distinct areas, namely, North America, Europe, the Sahara and India, to simultaneously retrieve the aerosol optical depth (AOD), BRF parameters and surface albedo. Preliminary results show that AOD and reflectance retrieved from the three different instruments are in good agreement and that LABITS provides good results over both bright surfaces, e.g. the Sahara, and dark surfaces, e.g. Europe. Evaluation of the AOD versus data from the Aerosol Robotic Network (AERONET) provides a correlation coefficient R2 of 0.88 and a root-mean-square error (RMSE) of approximately 0.07; and the uncertainty is approximately ¦¤¦Ó = ¡À 0.05 ¡À 0.20¦Ó. Comparing our results with the moderate resolution imaging spectroradiometer (MODIS) AOD products, over many areas, provides biases in the range of ¡À 0.05. The surface albedo values calculated from the retrieved BRF parameters are similar to those provided by the MODIS albedo product (MCD43). The robustness and applicability of the LABITS algorithm are demonstrated with the retrieval of AOD over China during August 2008. Daily and monthly averaged results show good agreement with collocated AERONET observations and AQUA MODIS products (MYD04 and MYD08). The AOD uncertainty is estimated as ¦¤¦Ó = ¡À 0.05 ¡À 0.30¦Ó. The preliminary analysis of time series over selected AERONET sites shows that the temporal variations of the AOD values retrieved by application of LABITS to AVHRR data are overall similar to temporal variations of AOD provided by the MODIS and AERONET. The algorithm has the potential to retrieve global AOD over land for long time series of NOAA AVHRR data going back to the 1980s, which are urgently needed for studies on aerosol climatology and global climate change.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700