A method for analysis of linear dynamic systems driven by stationary non-Gaussian noise with applications to turbulence-induced random vibration
详细信息    查看全文
文摘
A method is developed for approximating the properties of the state of a linear dynamic system driven by a broad class of non-Gaussian noise, namely, by polynomials of filtered Gaussian processes. The method involves four steps. First, the mean and correlation functions of the state of the system are calculated from those of the input noise. Second, higher order moments of the state are calculated based on It么鈥檚 formula for continuous semimartingales. It is shown that equations governing these moments are closed, so that moment of any order of the state can be calculated exactly. Third, a conceptually simple technique, which resembles the Galerkin method for solving differential equations, is proposed for constructing approximations for the marginal distribution of the state from its moments. Fourth, translation models are calibrated to representations of the marginal distributions of the state as well as its second moment properties. The resulting models can then be utilized to estimate properties of the state, such as the mean rate at which the state exits a safe set. The implementation of the proposed method is demonstrated by numerous examples, including the turbulence-induced random vibration of a flexible plate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700