A high-order numerical manifold method with nine-node triangular meshes
详细信息    查看全文
文摘
The numerical manifold method (NMM) is a unified framework that is used to describe continuous and discontinuous problems. The NMM is derived based on the finite cover approximation theory and gains its name after the mathematical notion of manifold. It is also a method based on the partition of unity (PU) and it introduces two cover systems: the mathematical cover (MC) and the physical cover (PC). There are two approaches for constructing high-order approximations. The first approach involves a non-constant PU function and non-constant local approximations. This results in the linear dependence (LD) problem and leads to the singularity in a global matrix. The second approach involves a higher PU function and constant local approximations. The increase in the order of approximations should go along with the increase in star but the LD problem can be avoided completely in theory. In this paper, a new high-order NMM with nine-node triangular meshes is proposed. The upgrade from first-order NMM to high-order NMM is illustrated in detail. Moreover, the initial stress matrix is analyzed in detail. The effectiveness and accuracy of the proposed high-order NMM are validated using several typical examples. The proposed high-order NMM supplements the existing family of non-LD high- and low-order NMM under MC with triangular meshes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700