Fluorite dissolution at acidic pH: In situ AFM and ex situ VSI experiments and Monte Carlo simulations
详细信息    查看全文
文摘
Dissolution of the fluorite (1 1 1) cleavage surface was investigated by means of in situ atomic force microscopy (AFM) and ex situ vertical scanning interferometry (VSI) experiments at pH range 1–3 in HCl solutions. Surface retreat was quantified at different pH values, yielding dissolution rates that were used to derive an empirical rate law for fluorite dissolution:

where aH+ is the proton activity.

The influence of ΔG on fluorite dissolution rate at pH 2 was investigated by means of AFM and VSI surface measurements and flow-through experiments with powdered fluorite. The fluorite dissolution rate decreases non-linearly with increasing Gibbs energy (ΔG) and a dissolution plateau is obtained at ΔG  −7 kcal mol−1. This ΔG effect can be expressed with a rate law of the form

An alternative form based on a formulation making use of a Temkin number is also possible

Dissolution proceeds by formation of equilateral triangular etch pits with trigonal pyramidal morphology and emanation of stepwaves that are responsible for the surface retreat. The results of Monte Carlo simulations are consistent with this reaction mechanism.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700