Microfluidic synthesis of dye-loaded polycaprolactone-block-poly(ethylene oxide) nanoparticles: Insights into flow-directed loading and in vitro release for drug delivery
详细信息    查看全文
文摘
Using the fluorescent probe dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) as a surrogate for hydrophobic drugs, we investigate the effects of water content and on-chip flow rate on the multiscale structure, loading and release properties of DiI-loaded poly(ε-caprolactone)-block-poly(ethylene oxide) (PCL-b-PEO) nanoparticles produced in a gas-liquid segmented microfluidic device. We find a linear increase in PCL crystallinity within the nanoparticle cores with increasing flow rate, while mean nanoparticle sizes first decrease and then increase with flow rate coincident with the disappearance and reappearance of long filament nanoparticles. Loading efficiencies at the lower water content (cwc + 10 wt%) are generally higher (up to 94%) compared to loading efficiencies (up to 53%) at the higher water content (cwc + 75 wt%). In vitro release times range between ∼2 and 4 days for nanoparticles produced at cwc + 10 wt% and >15 days for nanoparticles produced at cwc + 75 wt%. At the lower water content, slower release of DiI is found for nanoparticles produced at higher flow rate, while at high water content, release times first decrease and then increase with flow rate. Finally, we investigate the effects of the chemical and physical characteristics of the release medium on the kinetics of in vitro DiI release and nanoparticle degradation. This work demonstrates the general utility of dye-loaded nanoparticles as model systems for screening chemical and flow conditions for producing drug delivery formulations within microfluidic devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700