Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy
详细信息    查看全文
文摘
This study examined microstructural characteristics and mechanical properties in a β-type Ti-15Mo alloy (mass%) with different oxygen contents, and their corrosion behavior in simulated physiological media. With increasing oxygen content from 0.1–0.5%, lattice parameter of parent β-phase increased from X-ray diffraction profiles, and spots of athermal ω-phase became weak and diffuse through transmission electron microscopy observations. {332}<113> twin density decreased with an increase in oxygen content from 0.1–0.3% based on electron backscattered diffraction analyses, and it became almost zero when further increased oxygen content up to 0.5%. The solute oxygen atoms led to both a transition of {332}<113> twinning to dislocation slip and a suppression of β-phase to ω-phase transformation. Room-temperature tensile testing of this alloy with oxygen content ranging from 0.1–0.5%, revealed that yield strength ranged from 420 MPa to 1180 MPa and that uniform elongation ranged from 47–0.2%. The oxygen-added alloys kept a low elastic modulus obtained from stress-strain curves, and exhibited good corrosion resistance in Ringer's solution from open-circuit potential and potentiodynamic polarization measurements. A desirable balance between mechanical properties and corrosion resistance is obtainable in this alloy as biomaterials through utilizing oxygen to control the deformation mode.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700