Selecting reliable interatomic potentials for classical molecular dynamics simulations of glasses: The case of amorphous SiO2
详细信息    查看全文
文摘
This paper presents an approach to judge the quality of classical interatomic potentials used in molecular dynamics simulations of glasses. The static structure and dynamical properties of amorphous SiO2 were simulated by classical molecular dynamics using a series of well known interatomic potentials. Theoretical X-ray and neutron structure factors and effective neutron-weighted vibrational density of states of amorphous SiO2 were computed from the obtained atomistic configurations and quantitatively compared to experimental results. The interatomic potential which best reproduced the experimental X-ray and neutron scattering data severely failed to reproduce the experimental vibrational density of states of amorphous SiO2. It is found that only the potential developed by van Beest, Kramer, and van Santen (BKS) was able to adequately reproduce both static structure and dynamical properties of amorphous SiO2. Thus, the fact that an interatomic potential is able to properly reproduce static structures of amorphous systems should not be considered as a basis to use this potential to simulate other properties of these systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700