A viscoelastic approach for modeling bending behavior in finite element forming simulation of continuously fiber reinforced composites
详细信息    查看全文
文摘
An approach for modeling rate-dependent bending behavior in FE forming simulation for either a unidirectional or a woven/bidirectional reinforcement is presented. The applicability of the bending model to both fiber architectures is guaranteed by introducing either an orthogonal or a non-orthogonal fiber parallel material frame. The applied constitutive laws are based on a Voigt-Kelvin and a generalized Maxwell approach. The bending modeling approaches are parameterized according to the characterization of thermoplastic UD-Tape (PA6-CF), where only the generalized Maxwell approach is capable to describe the material characteristic for all of the considered bending rates. A numerical study using a hemisphere test reveals that the Voigt-Kelvin approach and the generalized Maxwell approach lead to similar results for the prediction of wrinkling behavior. Finally, the approaches for modeling bending behavior are applied to a more complex generic geometry as an application test with a good agreement between forming simulation and experimental tests.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700