用户名: 密码: 验证码:
Tropomyosin-Related Kinase B in the Mesolimbic Dopamine System: Region-Specific Effects on Cocaine Reward
详细信息    查看全文
文摘

Background

Previous studies found that brain-derived neurotrophic factor (BDNF) derived from nucleus accumbens (NAc) neurons can mediate persistent behavioral changes that contribute to cocaine addiction.

Methods

To further investigate BDNF signaling in the mesolimbic dopamine system, we analyzed tropomyosin-related kinase B (TrkB) messenger RNA (mRNA) and protein changes in the NAc and ventral tegmental area (VTA) in rats following 3 weeks of cocaine self-administration. To study the role of BDNF-TrkB activity in the VTA and NAc in cocaine reward, we used localized viral-mediated Cre recombinase expression in floxed BDNF and floxed TrkB mice to knockdown BDNF or TrkB in the VTA and NAc in cocaine place conditioning tests and TrkB in the NAc in cocaine self-administration tests.

Results

We found that 3 weeks of active cocaine self-administration significantly increased TrkB protein levels in the NAc shell, while yoked (passive) cocaine exposure produced a similar increase in the VTA. Localized BDNF knockdown in either region reduced cocaine reward in place conditioning, whereas only TrkB knockdown in the NAc reduced cocaine reward. In mice self-administering cocaine, TrkB knockdown in the NAc produced a downward shift in the cocaine self-administration dose-response curve but had no effect on the acquisition of cocaine or sucrose self-administration.

Conclusions

Together, these data suggest that BDNF synthesized in either VTA or NAc neurons is important for maintaining sensitivity to cocaine reward but only BDNF activation of TrkB receptors in the NAc mediates this effect. In addition, up-regulation of NAc TrkB with chronic cocaine use could promote the transition to more addicted biological states.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700