On the role of boron on improving ductility in a new polycrystalline superalloy
详细信息    查看全文
文摘
The role of boron in promoting ductility at high temperature in a prototype nickel-based superalloy designed for industrial gas turbines is studied. Both a boron-containing and boron-free variant are tested in tension at 750 °C, with further in-situ tests carried out using scanning electron microscopy (SEM), to clarify the mechanism of ductility improvement. The improvement in ductility is observed to be greater at the lowest investigated strain rate, where the grain boundary character plays a significant role on the mechanical properties; no ductility improvement was observed at the highest investigated strain rate. The in-situ tests were also performed at 750 °C and revealed directly the greater susceptibility of the grain boundary morphology in the boron-free case to fracture and – in the boron-containing case – the mechanism of ductility enhancement. The findings are supported further by high-resolution electron backscattered diffraction (HR-EBSD) strain mapping which confirms that the distribution of elastic strain and geometrically necessary dislocation (GND) content are influenced markedly by boron addition. The mechanism through which boron indirectly enhances the mechanical properties at elevated temperatures is discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700