The mechanism for the formation of slug flow in vertical gas–liquid two-phase flow
详细信息    查看全文
文摘
This paper studies the mechanism for the formation of a slug flow in vertical gas–liquid two-phase flow. By analyzing void fraction waves and their instability, it is proved that the formation of a slug flow regime is due to the increase of void fraction waves, which causes the conglomeration of gas bubbles and the coalescence of bubble clusters in unstable bubbly flow. Experiments and analysis show that intense turbulence can restrain the formation of Taylor bubbles. Therefore, in a large diameter vertical pipe, a Taylor bubble can form under a condition of low continuous volume flux due to the action of void fraction waves. However, the coalescence effect of void fraction waves as it affects bubbles is suppressed in high continuous volume flux, and therefore, a slug flow regime cannot be observed in the evolution of flow patterns. Under a condition of high continuous volume flux (VL

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700