Electron transfer activity of a de novo designed copper center in a three-helix bundle fold
详细信息    查看全文
文摘
In this work, we characterized the intermolecular electron transfer (ET) properties of a de novo designed metallopeptide using laser-flash photolysis. α3D-CH3 is three helix bundle peptide that was designed to contain a copper ET site that is found in the β-barrel fold of native cupredoxins. The ET activity of Cuα3D–CH3 was determined using five different photosensitizers. By exhibiting a complete depletion of the photo-oxidant and the successive formation of a Cu(II) species at 400 nm, the transient and generated spectra demonstrated an ET transfer reaction between the photo-oxidant and Cu(I)α3D-CH3. This observation illustrated our success in integrating an ET center within a de novo designed scaffold. From the kinetic traces at 400 nm, first-order and bimolecular rate constants of 105 s− 1 and 108 M− 1 s− 1 were derived. Moreover, a Marcus equation analysis on the rate versus driving force study produced a reorganization energy of 1.1 eV, demonstrating that the helical fold of α3D requires further structural optimization to efficiently perform ET. This article is part of a Special Issue entitled Biodesign for Bioenergetics — the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700