Elucidating Substrate and Inhibitor Binding Sites on the Surface of GSK-3β and the Refinement of a Competitive Inhibitor
详细信息    查看全文
文摘
A molecular understanding of substrate recognition of protein kinases provides an important basis for the development of substrate competitive inhibitors. Here, we explored substrate recognition and competitive inhibition of glycogen synthase kinase (GSK)-3β using molecular and computational tools. In previous work, we described Gln89 and Asn95 within GSK-3β as important substrates binding sites. Here, we show that the cavity bordered by loop 89-QDKRFKN-95, located in the vicinity of the GSK-3β catalytic core, is a promiscuous substrate binding subsite. Mutations within this segment highlighted Phe93 as an additional essential contact residue for substrates' recognition. However, unlike Gln89 and Asn95, Phe93 was also important for the binding of our previously described substrate competitive inhibitor, L803 [KEAPPAPPQS(p)P], and its cell-permeable variant L803-mts. The effects of the substitution of charged or polar residues within L803 further suggested that binding to GSK-3β is governed by hydrophobic interactions. Our computational model of GSK-3β bound to L803 was in agreement with the experimental data. It revealed L803 binding with a hydrophobic surface patch and identified interactions between Pro8 (L803) and Phe93 (GSK-3β). Computational modeling of new L803 variants predicted that inhibition would be strengthened by adding contacts with Phe93 or by increasing the hydrophobic content of the peptide. Indeed, the newly designed L803 variants showed improved inhibition. Our study identified different and overlapping elements in GSK-3β substrate and inhibitor recognition and provides a novel example for model-based rational design of substrate competitive inhibitors for GSK-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700