Influence of the structure of aryl phosphates on the flame retardancy of polycarbonate/acrylonitrile-butadiene-styrene
详细信息    查看全文
文摘
The impact of the chemical structure of four different aryl bisphosphates on the flame retardancy of bisphenol A polycarbonate/acrylonitrile-butadiene-styrene blends (PC/ABS) was investigated. The impact of the bridging unit was studied, by comparing bisphenol A bis(diphenyl phosphate) BDP with biphenyl bis(diphenyl phosphate) BBDP and hydroquinone bis(diphenyl phosphate) HDP; as well as the influence of an aromatic substitution by comparing BBDP with biphenyl bis (di-2,6-xylyl phosphate) BBXP. The blends were investigated in terms of pyrolysis (thermogravimetry TG, TG coupled with Fourier transformed infrared spectroscopy (FTIR) and mass spectrometry (MS)) and fire performance (cone calorimeter, LOI, UL 94). The decomposition temperature of the flame retardant is a main parameter enabling a condensed phase interaction with PC decomposition products. The phosphate esters reacting with phenolic groups during pyrolysis were shown to increase cross-linking and reduce the hydrolysis/alcoholysis of the carbonate group. Variation of the aromatic substitution with the use of biphenyl bis (di-2,6-xylyl phosphate) led to reduced performance, highlighting the importance of the reactivity of the flame retardant with the decomposing PC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700