Modeling and optimization of a large-scale slurry bubble column reactor for producing 10,000 bbl/day of Fischer–Tropsch liquid hydrocarbons
详细信息    查看全文
文摘
A user-friendly simulator based on a comprehensive computer model for slurry bubble column reactors (SBCRs) for Fischer–Tropsch (F–T) synthesis, taking into account the hydrodynamics, kinetics, heat transfer, and mass transfer was developed. The hydrodynamic and mass transfer data obtained in our laboratories under typical F–T conditions along with those available in the literature were correlated using Back Propagation Neural Network and empirical correlations with high confidence levels. The data used covered wide ranges of reactor geometry, gas distributor, and operating conditions. All reactor partial differential equations, equation parameters and boundary conditions were simultaneously solved numerically.

The simulator was systematically used to predict the effects of reactor geometry (inside diameter and height) as well as superficial gas velocity and catalyst concentration on the performance of a large-scale SBCR provided with cooling pipes and operating under F–T conditions with cobalt-supported catalyst and H2/CO = 2. The performance of the SBCR was expressed in terms of CO conversion, liquid hydrocarbon yield, catalyst productivity, and space time yield. The simulator was also used to optimize the reactor geometry and operating conditions in order to produce 10,000 barrels/day (bbl/day) of liquid hydrocarbons.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700