Heterogeneous and asynchronous networks of timed systems
详细信息    查看全文
文摘
We present a component algebra and an associated logic for heterogeneous timed systems that can be interconnected at run time. The components of the algebra are asynchronous networks of processes, where processes are sets of traces that model the behaviour of the software applications or devices that are interconnected and execute according to the clock granularity of the network node in which they are placed. The advantage of a trace-based model is that it abstracts from the specificities of the different classes of automata that can be chosen as models of implementations and characterises at a higher level the topological properties of the languages generated by such automata that support several compositionality results; in the paper, such properties are supported by a new time refinement relation and its related closure operator. The main novelty and contribution of our theory lies in the fact that we do not assume that all network nodes have the same clock granularity and that interconnections can be established, at run time, among nodes with different clock granularities. We investigate conditions under which the interconnected processes can communicate and make progress, generating a collective non-empty behaviour, i.e., conditions that ensure that the interconnection is consistent. Those conditions can be verified at design time, thus allowing that systems can be interconnected at run time without further checking for compatibility; to the best of our knowledge, no other component algebra has been put forward for timed heterogeneous systems that does not require a-priory knowledge of their structure. Finally, we propose a logic that can support specifications for this component algebra and prove associated compositionality results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700