Thermo-Mechanical Finite Element Simulation and Fatigue Life Assessment of a Copper Mould for Continuous Casting of Steel
详细信息    查看全文
文摘
This work describes the thermo-mechanical analysis of a copper mould for continuous steel casting. During the process, the molten steel passes through a water cooled mould. The inner part of the component is subjected to a huge thermal flux. Consequently large temperature gradients occur across the component, especially in the region near to the meniscus, and cause elastic and plastic strains. The aim of this work is to set up an industrially oriented approach to assess the fatigue life of the copper mould. To achieve the goal, a three-dimensional finite element model is analyzed in dependence of four different material models (linear kinematic hardening, combined, stabilized and accelerated material model). The main question is which material model is more suitable to be used. Material coefficients for all applied material and fatigue life models are estimated from experimental, isothermal low cycle fatigue data. The fatigue life is also assessed depending on different material models. The results obtained with the FEM analysis are examined and compared.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700