Multistability, nonlinear response and wave propagation in self-humidified PEM fuel cells
详细信息    查看全文
文摘
A simple tanks-in-series model is presented, which allows for the understanding of the basic physics behind complex spatiotemporal behaviors observed in self-humidified polymer electrolyte membrane (PEM) fuel cells. Our approach is focused on how the intrinsically nonlinear dynamics of water formation couples with water transport, leading to multistability, inhomogeneous steady state current profiles through the cell and other nonlinear phenomena. We show in particular how the operating parameters determine the location of high current spots and the subsequent propagation of current waves throughout the cell during the ignition procedure. We also reproduce and explain transient current increases seen during the extinction of the cell and the unusual aspect of the polarization curves. Implications for the efficiency of self-humidified PEM fuel cells are highlighted, and possible ways to improve their performances are discussed on these bases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700