How does a small peptide choose how to bind a metal ion? IRMPD and computational survey of CS versus Iminol binding preferences
详细信息    查看全文
文摘
Binding to proteins and peptides in condensed phases, it is normal for alkali and alkaline earth metal ions to interact preferentially with Lewis-basic oxygen, nitrogen and similar open chelation points, while late transition metals like cobalt, nickel and copper characteristically deprotonate and bind to amide nitrogens along the peptide chain. Parallel to these contrasting condensed-phase binding-mode alternatives, metal ions in the gas phase can form complexes with small peptides in several complexation modes, among them the charge-solvated (CS) and the Iminol patterns. Reported here is a computational study of the factors determining the choice between these patterns in the gas phase for model ligands, dialanine and trialanine, also including illustrative experimental spectroscopic results for Ag+(Ala)3 using the infrared multiple photon dissociation (IRMPD) technique (which has also provided previous experimental results for many of the ions studied here). Across a survey of 29 metal ions in normal oxidation states (+1, +2 and +3), unexpectedly strong correlations are found (for each charge state) between the preference for CS versus Iminol binding and the overall binding energies of the ions. Ions of +1 charge invariably prefer CS binding, while those with higher charge exhibit variable preferences. Within a given charge state, Iminol binding is more favorable, and overall binding is stronger, for light metal ions and for metal ions (鈥渢ransition metals鈥? late in the periodic table. The tendency to go from CS to Iminol in the gas phase is generally parallel to the tendency to bind deprotonated amide nitrogens in condensed-phase, but with possible divergence between the differing environments at the point where the tendencies cross over near Mg(II). Hard/soft character of the metal ions correlates to some extent with the binding preferences, but this correlation shows numerous discrepancies. For 鈥渕ain-group鈥?metal ions, electrostatic character of the binding is suggested by excellent scaling of binding energies with a scaling parameter q/R, while a contribution of enhanced binding in addition to the electrostatic binding energy is indicated for 鈥渢ransition鈥?metals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700