Effect of landfill leachate on oxidative stress of brain structures and liver from rodents: Modulation by photoelectrooxidation process
详细信息    查看全文
文摘
The decomposition of solid waste in landfill is responsible for the formation of leachate, a dark liquid with an unpleasant odor; studies investigating its toxicity on mammals are rare. Oxidative stress has been considered as an important biochemical mechanism of the toxicity of several xenobiotics. The aim of this study was to evaluate the effects of landfill leachate on oxidative parameters in striatum, hippocampus and liver homogenates of mice and rats. In order to propose a clean technology for the treatment of leachate, we also investigated the effects of landfill leachate submitted to photoelectrooxidation process (PEO). The homogenates of cerebral structures and liver of Swiss albino mice and Wistar rats were incubated with different concentrations of non-PEO landfill leachate and PEO-treated landfill leachate. After the incubation, the levels of free radicals, determined by 2',7'-dichlorofluorescein diacetate probe, and the lipoperoxidation, quantified by the thiobarbituric acid reactive substances, were evaluated. There was an increase on the levels of free radicals in striatum of both mice and rats when exposed to non-PEO leachate. Moreover, PEO-treated leachate increased the lipoperoxidation in striatum homogenates from rodents. However, both leachates did not alter any of the parameters evaluated in the hippocampus. In the liver, the incubation with leachates induced an augment on levels of free radicals only in samples of mice. In addition, PEO-treated leachate increased the lipoperoxidation indexes in the liver of mice and rats. These results suggest that the landfill leachate can induce an oxidative stress state in the liver and the striatum of rodents. Additionally, the PEO process was unable to efficiently alter the toxic compounds of landfill leachate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700