A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate
详细信息    查看全文
文摘
This article presents the study of heat transfer and fluid flow processes in an artificially roughened solar air heater by using computational fluid dynamics (CFD). The effects of small diameter of transverse wire rib roughness on heat transfer and fluid flow have been investigated. The Reynolds number, relative roughness pitch (P/e) and relative roughness height (e/D) are chosen as design variables. A two-dimensional CFD simulation is performed using the ANSYS FLUENT 12.1 code. The Renormalization-group (RNG) k-¦Å model is selected as the most appropriate one. Results are validated by comparing with available experimental results. It is apparent that the turbulence created by small diameter of transverse wire ribs result in greater increase in heat transfer over the duct. However, the use of artificial roughness results in higher friction losses. The present CFD investigation clearly demonstrates that the average Nusselt number and average friction factor increase with increase in the relative roughness height while giving opposite trend with increase in relative roughness pitch. The condition for optimum performance has been determined in term of thermal enhancement factor. A maximum value of thermal enhancement factor has been found to be 1.65 for the range of parameters investigated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700