Molecular Dissection of the Inhibitor Binding Pocket of Mitotic Kinesin Eg5 Reveals Mutants that Confer Resistance to Antimitotic Agents
详细信息    查看全文
文摘
The mitotic kinesin Eg5 plays an essential role in establishing the bipolar spindle. Recently, several antimitotic inhibitors have been shown to share a common binding region on Eg5. Considering the importance of Eg5 as a potential drug target for cancer chemotherapy it is essential to understand the molecular mechanism, by which these agents block Eg5 activity, and to determine the “key residues” crucial for inhibition. Eleven residues in the inhibitor binding pocket were mutated and the effects were monitored by kinetic analysis and mass spectrometry. Mutants R119A, D130A, P131A, I136A, V210A, Y211A and L214A abolish the inhibitory effect of monastrol. Results for W127A and R221A are less striking, but inhibitor constants are still considerably modified compared to wild-type Eg5. Only one residue, Leu214, was found to be essential for inhibition by STLC. W127A, D130A, V210A lead to increased Kiapp values, but binding of STLC is still tight. R119A, P131A, Y211A and R221A convert STLC into a classical rather than a tight-binding inhibitor with increased inhibitor constants. These results demonstrate that monastrol and STLC interact with different amino acids within the same binding region, suggesting that this site is highly flexible to accommodate different types of inhibitors. The drug specificity is due to multiple interactions not only with loop L5, but also with residues located in helices α2 and α3. These results suggest that tumour cells might develop resistance to Eg5 inhibitors, by expressing Eg5 point mutants that retain the enzyme activity, but prevent inhibition, a feature that is observed for certain tubulin inhibitors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700