Evaluation of antibacterial activity from phytosynthesized silver nanoparticles against medical devices infected with Staphylococcus spp.
详细信息    查看全文
文摘
Biofilm formation on the surface of medical devices, such as artificial prosthetics and catheters, are serious challenges to biomedical science. Most conventional methods, such as antibiotic therapy and medical device replacement, have failed because of low efficiency in medical environments. In the present study, we aimed to prevent infection by human pathogens Staphylococcus epidermidis (35984) and Staphylococcus aureus (740), which are resistant to antibiotic therapy. To prevent these infections, phytosynthesized silver nanoparticles (AgNPs) coating was tested.MethodsThe AgNPs were synthesized using aqueous extract of Berberis asiatica leaves and were characterized by UV–vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The viable cells of bacteria were counted using a digital colony counter.ResultsAgNPs were 15 nm–35 nm in size and crystallized in a face-centred-cubic structure. Furthermore, the AgNPs coating on glass surfaces were bactericidal.ConclusionsThis study suggested that phytosynthesized AgNPs capped with various biomolecules present in leaf extracts of B. asiatica coated on glass surface prevent S. epidermidis and S. aureus associated infections of medical devices. Thus, coating of phytosynthesized AgNPs on glass surfaces may provide efficient antibacterial treatment of infected medical devices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700