Pharmacophore-based screening of differentially-expressed PGF, DDIT4, COMP and CHI3L1 from hMSC cell lines reveals five novel therapeutic compounds for primary osteoporosis
详细信息    查看全文
文摘
As many societies age, primary osteoporosis (PO) is increasingly a major health problem. Current drug treatments such as alendronate and risedronate have known side effects. We took an agnostic empirical approach to find PO therapeutic compounds. We examined 13,548,960 probe data-points from mesenchymal stromal cell (hMSC) lines and found that m>PGFm>, m>DDIT4m>, and m>COMPm> to be up-regulated, and m>CHI3L1m>, down-regulated. We then identified their druggable domains. For the up-regulated differentially-expressed genes, we used protein–protein interactions to find residue clusters as binding surfaces. We then employed pharmacophore models to screen 15,407,096 conformations of 22,723,923 compounds, which identified (6R,9R)-6-(2-furyl)-9-(1H-indol-3-yl)-2-(trifluoromethyl)-5,6,7, 9-tetrahydro-4H[1,2,4]triazolo[5,1],(2S)-N1-[2-[2-(methylamino)-2-oxo-ethyl]phenyl]-N2-phenylpyrrolidine-1,2-dicarboxamide, and 2-furyl-(1H-indol-3-yl)-methyl-BLAHone as candidate compounds. For the down-regulated m>CH13L1m>, we relied on genome-wide disease signatures to identify (11alpha)-9-fluoro-11,17,21-trihydroxypregn-4-ene-3,20-dione and Genistein as candidate compounds. Our approach differs from previous research as we did not confine our drug targets to hypothesized compounds in the existing literature. Instead, we allowed the full expression profile of PO cell lines to reveal the most desirable targets. Second, our differential gene analysis revealed both up- and down-regulated genes, in contrast to the literature, which has focused on inhibiting only up-regulated genes. Third, our virtual screening universe of 22,723,923 compounds was more than 100 times larger than those in the known literature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700