Cortisol-induced effects on human cortical excitability
详细信息    查看全文
文摘

Background

Cortisol may fulfill all criteria for a neuromodulator. However, it is not known whether it may rapidly influence motor system activity in humans.

Objective

Circulating cortisol levels were manipulated by administration of a single intravenous dose of hydrocortisone or saline solution, on separate days, to study changes in corticospinal and motor cortical excitability.

Methods

Motor-evoked potentials (MEPs) to single- and paired-pulse transcranial magnetic stimulation from the resting first dorsal interosseous muscle, and cortisol plasma levels were assessed before and after either a bolus of 20 mg of hydrocortisone or saline solution in seven healthy subjects.

Results

Mean cortisol plasma level rapidly rose, peaked between 5 and 10 minutes after hydrocortisone injection, to slowly decay afterward. Mean MEP amplitude significantly increased from preinjection levels, and mean standard deviation of MEPs significantly increased between 8-12 minutes postinjection. Short-intracortical inhibition, tested during the same period, was significantly decreased. No significant changes in the above measures were observed after saline solution administration.

Conclusions

Our results suggest that high circulating levels of cortisol rapidly increase corticospinal excitability and reduce gamma aminobutyric acid activity, as measured by short-intracortical inhibition, in humans. These effects, lasting about 10 minutes, were observed within 15 minutes from the pharmacological intervention. They are therefore compatible with a nongenomic mechanism. These findings are important in view of the notion that a decrease in intracortical gamma aminobutyric acid activity appears to be a prerequisite for motor learning and plastic processes in the human motor cortex.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700