Renormalization of graphene bands by many-body interactions
详细信息    查看全文
文摘
We have determined the electronic bandstructure of clean and potassium-doped single layer graphene, and fitted the graphene π bands to a first- and third-nearest-neighbor tight binding model. We characterized the quasiparticle dynamics using angle resolved photoemission spectroscopy. The dynamics reflect the decay of quasiparticles (holes) into collective excitations, namely plasmons, phonons, and electron–hole pairs. Electron–hole pair decay is found to be a minimum at the Dirac energy while electron–plasmon scattering is maximum around the same energy. Taking the topology of the bands around the Dirac energy for n-doped graphene into account, we show that these results follow from kinematic constraints imposed by graphene’s gapless energy spectrum around the Dirac energy. We also show that the electron–phonon scattering in lightly doped graphene is around 6 times larger than the predictions of published calculations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700