A finite-element, multi-scale model of the Scheldt tributaries, river, estuary and ROFI
详细信息    查看全文
文摘
We report on the development and validation of a coupled two- and one-dimensional finite-element model for the Scheldt tributaries, river, estuary and region of fresh water influence (ROFI). The hydrodynamic equations are solved on a single, unstructured, multi-scale mesh stretching from the shelf break to the Scheldt tributaries. The tide is forced on the shelf break and propagates upstream in the riverine network. Upstream boundaries lie on sluices or outside of the region of tidal dominance where daily averaged discharges are imposed. Two-dimensional, depth-averaged shallow water equations are solved by means of the discontinuous Galerkin (DG) method over the marine and estuarine parts of the computational domain. In the rivers, however, one-dimensional equations are dealt with using the DG method with the addition of a technique to cope with confluence points. Model parameters are carefully calibrated, leading to the simulation of wind- and tide-forced flows that are in excellent agreement with available data. The diffusivity in the transport equation is calibrated using time series of salinity at various locations in the estuary. Finally, the Lagrangian residual transport in the estuary and the adjacent coastal zone is investigated. This work is a major step towards an integrated model for studying the dynamics of waterborne contaminants and the water renewal timescales in the Scheldt land-sea continuum.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700