Copper viscoelasticity manifested in scratch recovery
详细信息    查看全文
文摘
We have investigated two thick film copper compositions used in thermoelectric device fabrication. Dynamic mechanical analysis, thermal mechanical analysis, tensile testing, Vickers microhardness, optical microscopy and scratch testing were performed. The small grain samples have much smaller microindentation areas and much higher hardness than large grain samples, a consequence of intergranular spaces and thus low cohesion in large grain materials. The small grain material without intergranular spaces has higher linear thermal expansivity αL up to 150 °C; above that temperature negative αL is seen, a consequence of orientation relaxation. The large grain material also exhibits αL < 0 but only above 275 °C or so, a consequence of sintering. The small grain material has a storage modulus 49 % higher than the large grain material over a wide temperature range, again an effect of high cohesion in the former. The brittleness value for the large grain material is 3.5 times larger than for the small grains material. Both kinds of materials exhibit recovery in scratch testing in the overall range of 23–36 % —a manifestation of viscoelasticity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700