Simulations of a sphere sedimenting in a viscoelastic fluid with cross shear flow
详细信息    查看全文
文摘
The settling rate of heavy spheres in a shear flow of viscoelastic fluid is studied by numerical simulation. Experimental data [Tonmukayakul et al., US Patent Application US20110219856 (2011); van den Brule and Gheissary, J. Non-Newton. Fluid Mech. 49 (1993) 123-132] have shown that both shear thinning and the elasticity of the suspending polymeric solutions affect the settling rate of the solids. In the present work, simulations of viscoelastic flow past a single, torque-free sphere with a cross shear flow are used to study the effect of the elasticity of the carrying fluid on the sphere¡¯s settling rate. The FENE-P constitutive model is used to represent a viscoelastic Boger fluid, with parameters obtained by fitting rheological data. A twofold increase in drag, i.e. a decrease in settling rate, is obtained with increase in the cross shear Weissenberg number, m>Wim> ? 15, even though the shear viscosity of the solution decreases over this same range. At small Weissenberg number, m>Wim> < 2, the simulations remain in quantitative agreement with the experiments. At higher Weissenberg number, the numerical results remain in qualitative agreement with settling experiments although the magnitude of the simulated decrease in settling rate is smaller than that observed in experiments. The detailed physical mechanism for the increase in the drag experienced by the sphere in the simulations is presented and we show that m>¦Óm>11 component of the viscous stress (with 1, the sedimentation direction) is the primary cause of the increase in sphere drag.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700