Species conserved DNA damage response at the inactive human X chromosome
详细信息    查看全文
文摘
Chromatin modifications are long known as an essential part of the orchestrated response resulting in the repair of radiation-induced DNA double-strand breaks (DSBs). Only recently, however, the influence of the chromatin architecture itself on the DNA damage response has been recognised. Thus for heterochromatic DSBs the sensing and early recruitment of repair factors to the lesion occurs within the heterochromatic compartments, but the damage sites are subsequently relocated from the inside to the outside of the heterochromatin. While previous studies were accomplished at the constitutive heterochromatin of centromeric regions in mouse and flies, here we examine the DSB repair at the facultative heterochromatin of the inactive X chromosome (Xi) in humans. Using heavy ion irradiation we show that at later times after irradiation the DSB damage streaks bend around the Xi verifying that the relocation process is conserved between species and not specialised to repetitive sequences only. In addition, to measure chromatin relaxation at rare positions within the genome, we established live cell microscopy at the GSI microbeam thus allowing the aimed irradiation of small nuclear structures like the Xi. Chromatin decondensation at DSBs within the Xi is clearly visible within minutes as a continuous decrease of the DNA staining over time, comparable to the DNA relaxation revealed at DSBs in mouse chromocenters. Furthermore, despite being conserved between species, slight differences in the underlying regulation of these processes in heterochromatic DSBs are apparent.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700