Eartip modifications for more accurate acoustic length estimations of ear canal models or calibration cavities
详细信息    查看全文
文摘
The cross-sectional discontinuity between a probe eartip and an ear canal (EC) causes the latter to 鈥渁coustically鈥?appear longer than it is 鈥済eometrically鈥? In this study, the idea of whether modifications within the eartip geometry can reduce this length overestimation was investigated: (i) upon extending one of the connecting (sound or microphone) tubes and (ii) upon sinking the entire probe tube assembly into the eartip. Finite element models of the eartip modifications were created, and validated by measurements on rigid EC models using eartip prototypes. Whereas extending the sound tube yielded no considerable effect, extending the microphone tube by 2 mm counterbalanced the discontinuity effect for a 12 mm diameter EC model. Alternatively, sinking the tube assembly 2 mm into the eartip allowed for radially symmetric sound radiation at the discontinuity, which was then described by a series inductance in the lumped-element equivalent circuit. Whereas this elaborate modification with the recess is more appropriate for calibration purposes (where the exact geometry of a calibration cavity or EC simulator is known), a microphone extension is more practical when a rough length estimate of large-diameter ECs is required. In most practical applications, discontinuity effects can be accounted for by using modified eartips.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700