10B-editing 1H-detection and 19F MRI strategies to optimize boron neutron capture therapy
详细信息    查看全文
文摘
Boron neutron capture therapy (BNCT) is a binary radiation therapy used to treat malignant brain tumours. It is based on the nuclear reaction (10B + nth → [11B*] → α + 7Li + 2.79 MeV) that occurs when 10B captures a thermal neutron to yield α particles and recoiling 7Li nuclei, both responsible of tumour cells destruction by short range and high ionization energy release. The clinical success of the therapy depends on the selective accumulation of the 10B carriers in the tumour and on the high thermal neutron capture cross-section of 10B. Magnetic resonance imaging (MRI) methods provide the possibility of monitoring, through 10B nuclei, the metabolic and physiological processes suitable to optimize the BNCT procedure. In this study, spatial distribution mapping of borocaptate (BSH) and 4-borono-phenylalanine (BPA), the two boron carriers used in clinical trials, has been obtained. The BSH map in excised rat brain and the 19F-BPA image in vivo rat brain, representative of BPA spatial distribution, were reported. The BSH image was obtained by means of double-resonance 10B-editing 1H-detection sequence, named M-Bend, exploiting the J-coupling interaction between 10B and 1H nuclei. Conversely, the BPA map was obtained by 19F-BPA using 19F-MRI. Both images were obtained at 7 T, in C6 glioma-bearing rat brain. Our results demonstrate the powerful of non conventional MRI techniques to optimize the BNCT procedure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700