Selforganization in Fischer-Tropsch synthesis with iron- and cobalt catalysts
详细信息    查看全文
文摘
Unsteady initial regimes of Fischer-Tropsch synthesis with iron and cobalt catalysts have been investigated for changes in rate and selectivity, applying own-developed methods for temporal resolution of product composition. Using the kinetic model of non-trivial surface-polymerization, probabilities of reactions of chemisorbed intermediates are calculated as function of time and carbon number of species, at several sets of reaction parameters and different catalyst properties. Results are used to elucidate principles of selforganization.

The rules of iron catalyst selforganization are dominated by alkali promoting, as controlling iron phase composition and the relative rate of reaction of on-site-carbon for FT-monomer formation, Fe-carbide formation and carbon-phase formation鈥攖hese as in relation to primary and secondary formation of olefins and paraffins.

With cobalt as catalyst, selforganization for creating different kinds of active sites for primary and secondary reactions appears essential, and is explained via the observed selectivity changes. A dynamic structure of active sites is proposed. Probability of linear chain prolongation is merely carbon number dependent, but probability of growth with chain branching declines exponentially with carbon number, indicating increasing spatial constraints on the reaction. Selectivity changes are mechanistically understood from the ordered complexity of product composition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700